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Solving the Schrödinger-equation as a One-dimensional Problem. 
III. One-electron Systems withlmproved Discretization Algorithms 

After the calculations on one-electron atoms with simple discretization methods in part II of 
this work, more powerful techniques are presented here. The method of ARICKX was transferred 
to our one-dimensional calculations, and a fast „energy profile method" is used with which the 
excited states of one-electron atoms can be reproduced with high accuracy. The simplest polyatomic 
particle, H}, can be integrated into the formalism without any difficulties because of the general 
applicability of the integral kernel. Good results are available for this system, and a geometry 
optimization yields the same core distance as given in the literature. 
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In [1] wurde ein Formal i smus zur e indimensio-
nalen Dars te l lung der Schrödinger-Gleichung vor-
gestellt, bei we l chem unter A n w e n d u n g einer Inte-
gra l t ransformat ion und approximativ raumfül lender 
Kurven die HiLL-WHEELER-Gleichung in e indimen-
sionaler Dars te l lung resultiert. Mit dieser Gle ichung 
wurden in [2], unter Anwendung einer bes t immten 
Kurvenparametr is ierung, Testrechnungen an Einelek-
t ronatomen vorgenommen . Diese Parametris ierung 
führ t zwar nicht auf eine fraktale Struktur, kann je -
doch für die prakt ische Anwendung beliebig dicht ge-
macht werden. Als erste Lösungsmethode der Gl. (2) 
in [2] wurde e ine Diskret is ierungsmethode durch-
geführt , bei we lche r die Punkte im betreffenden Inte-
grat ionsbereich statistisch verteilt waren. Gerade im 
Z u s a m m e n h a n g mit den sogenannten Generatorko-
ord ina tenmethoden [3] im Bereich der Kernphysik 
sind aber verbesser te Verfahren für die Behandlung 
der HiLL-WHEELER-Gleichung im Einsatz, die auf 
die e indimens ionale Formulierung übertragen wur-
den. Durch E i n f ü h r u n g einer besonders schnellen Me-
thode zur Punkte rzeugung konnten auch angeregte 
Zustände mit hoher Genauigkei t erfaßt werden. 

Reprint requests to 
Prof. Dr. H. Preuß or Dr. M. Pernpointner. 

Variationel le Diskret i s ierung 

Die e infachste Mögl ichkei t , d ie e indimensionale 
Form der HiLL-WHEELER-Gleichung 

J [ H ( t ' , t ) - e S ( t ' , t ) ] f ( t ) d t = 0 (1) 

zu behandeln , besteht in der Wahl von äquidistant 
verteilten Diskre t i s ierungspunkten tk und Auswer-
tung der Gle ichung an diesen Punkten (siehe zum 
Beispiel [4]): 

n 

h ( 4 h) - eS(f**)]/(**) = 0, 
k=1 

i = 1 , . . . , n. 

Auch kann das auf t re tende Integral mittels eines 
Gauß-Legendre-Quadra turver fahrens behandel t wer-
den, wobei en tsprechende Gewichts faktoren auftre-
ten. Beide Integraldiskret is ierungen führ ten bei An-
wendung auf (1) in Verbindung mit approximat iv 
raumfü l lenden Kurven zu schnell e insetzenden linea-
ren Abhängigkei ten , und es konnte keine befr iedigen-
de Lösung erhalten werden. Da die Kurve den Gene-
ratorraum der Integral t ransformat ion nur approxima-
tiv erfassen kann und bes t immte Punkte auf dieser 
Kurve schneller zur Konvergenz führen als andere, 
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wird ein flexibleres Verfahren der Diskretisierung er-
forderlich. Im Falle der variationellen Diskretisierung 
werden diese Punkte so gewählt, daß eine möglichst 
schnelle Konvergenz des zugehörigen tiefsten Ener-
gieeigenwertes erreicht wird. Broeckhove und Deu-
mens geben in [5] eine mathematische Rechtfertigung 
dieser Vorgehensweise, welche sich problemlos auf 
die eindimensionale Darstellung übertragen läßt. 

Durch die Wellenfunktion wird der System-
zustand vollständig charakterisiert, wobei x die dyna-
mischen Koordinaten darstellen. Wird nun nach 

mit möglichst wenig Punkten zum tiefsten Energie-
eigenwert £o konvergiert. Ebenso kann aber die Wahl 
der Punkte auf die möglichst gute Erfassung der an-
geregten Zustände hin optimiert werden. Beide Sätze 
von Punkten lassen sich dann ohne Schwierigkeiten 
kombinieren (s.u.). In jedem Fall ergibt sich die Wel-
lenfunktion zum Eigenwert A nach Lösung von 
(8) mittels 

V x W & ^ C i x K f r u i t i ) ) , U e R . (9) 

V(x)= / K(xMt))f(t)dt (3) 

generiert, so bildet 

r = {K(x,u(t))\t € R} (4) 
eine kontinuierliche Familie von Zuständen, und 
durch Bildung der linearen Hülle 7i = LH{T} ent-
steht ein Unter-Hilbert-Raum des C2. Da Hilbert-
Räume gemäß der Theorie separabel sind, existiert 
als Basis von H eine abzählbare Untermenge von 
Zuständen I\(x. u{tr)), für die gilt 

n = LH{r0} mit r0 = {K(x. u(u))\i <E N} C r. (5) 

Somit kann \P(x) auch geschrieben werden als 

(6) 

Das Variationsprinzip zur Ermittlung der optimalen 
Koeffizienten c l führt nun auf die unendlichdimen-
sionale Gleichung 

oo Y^Wt'iM - eS(t[, tk)]ck = 0, i = 1 , . . . , oo, (7) 
jt=l 

welche zur numerischen Behandlung auf eine endli-
che Ordnung n gebracht werden muß. Die Wahl der 
tz ist nun aber beliebig, da kein spezielles Verfah-
ren zur Integraldiskretisierung vorausgesetzt wurde. 
So können die t l in der Weise variationeil best immt 
werden, daß die Gleichung endlicher Ordnung 

Y/iH(t'lJk)-SxS(t'lJk)]ckx= 0, 
., n , A = 1 . . . . n 

k= l 
(8) 

Die Gleichung (8), welche mit Gl. (3) in [2] identisch 
ist, dient nun in Verbindung mit speziellen Punktaus-
wahlverfahren als Ausgangspunkt für die verbesser-
ten Rechnungen an Einelektronsystemen. 

Punktauswahlverfahren 

Wie oben gezeigt, besteht nun die Möglichkeit , 
durch günstige Verfahren die Diskretisierungspunkte 
derart auszuwählen, daß eine schnellstmögliche Kon-
vergenz eintritt. 

Bei der Methode nach Caurier [6], welche auf un-
ser Problem übertragen wurde, wird der erste Diskre-
tisierungspunkt an der Stelle t\ so bestimmt, daß der 
Ausdruck 

(E) = 
{*\H\V) {K(x,U)\H\K(x,U)) 

< A ' ( J M , ) | A ' ( J M , ) > 
(10) 

zum Minimum wird, wobei als vereinfachte Schreib-
weise K(x.tj) anstatt I\(x.u(tj)) bei festgelegter 
funktionaler Form von u(tj) verwendet wird. Zur Er-
mittlung des nächsten Punktes t 2 wird mit den zu-
gehörigen Integralkernen K(x.t\) und I\(x.t2) eine 
2 x 2 Hamiltonmatrix der Form 

' ( A - ( J M , ) | £ | A - ( J M I ) ) ( K ( X , t\)\H\K(x, t2))^ 
y(K(x. t2)\H\K(x. t,)) (A'(x, t2)\H\K(x. t2))/ 

( 1 1 ) 

aufgebaut und diagonalisiert. Wiederum wird t2 in-
nerhalb des Integrationsbereiches so lange variiert, 
bis der kleinste Eigenwert von (11) minimal wird. 
Auf diese Weise fährt man fort, wobei für den ??-ten 
Punkt jeweils das n x n Problem zu lösen ist. Durch 
die Verwendung raumfüllender Kurven ist der zu dis-
kretisierende Integrationsbereich jedoch sehr ausge-
dehnt, wodurch eine große Zahl an Abtastpunkten zu 
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erfassen ist und dieses Verfahren dadurch sehr re-
chenintensiv wird. Des weiteren werden viele Dis-
kretisierungspunkte benötigt (n > 100). um bei der 
Abtastung des drei- oder höherdimensionalen Gene-
ratorraumes die nötige Genauigkeit zu erreichen. Die 
feine Abtastrate des Integrationsbereiches und die ho-
he Zahl benötigter Diskretisierungspunkte motivier-
ten den Einsatz schnellerer Verfahren. Hier ist eine 
Methode von Arickx [7] zu nennen, welche für un-
sere Problemstellung implementiert wurde, und ein 
„Energieprofilverfahren", welches auch die angereg-
ten Zustände der Einelektronatome in sehr guter Wei-
se wiederzugeben vermag. 

Implementat ion des Arickx-Verfahrens 

Das in [7] beschriebene Verfahren wurde von uns 
in folgender Weise auf die eindimensionalisierte Dar-
stellung angewandt: 

Der erste Diskretisierungspunkt t\ wird nun - wie 
bei Caurier - so bestimmt, daß die Energie 

Nn(ti) _ f dxK(x,ti)HK(x,U) 

S\\(t\) JdxK(x,ti)K(x,U) 
(12) 

am Testpunkt i\ ein Min imum wird. Als erste Wel-
lenfunktionsapproximation kann somit 

^ \ x ) = - = K ( x J A ) 
v >->11 

(13) 

mit dem ersten Punkt t\ angesehen werden. Zur Be-
s t immung der nächsten Punkte wird eine Testfunktion 
<P(x) mit dem Testpunkt t durch 

$(2\x) = cxV(X) + c2I\(x~t) 

= C\I\(xJ\) + c2I\(x, t) 
(14) 

konstruiert, welche den Energieerwartungswert E(2) 

liefert. 
Die Bildung der Ausdrücke dE/de\ bzw. dE/dc2 

führt auf ein 2 x 2 Säkularproblem. Auf diese Weise 
erhält man t2 und eine Approximation <^(2)(JC): 

&{2\x) = c, ^ ( 1 ) (x ) + c2I\'(x, t2). (15) 

Die Koeffizienten c\ und c2 ergeben sich nach jeder 
Bes t immung des Testpunktes neu. Auch für den n-ten 
Punkt löst man nur das 2 x 2 Säkularproblem, woge-
gen man bei Caurier das vollständige n x n Problem 

zu lösen hat. Das 2 x 2 Problem wird für den /?-ten 
Testpunkt nach 

«11 «12 
a 1? 

mit 

«12 = {V(n-l)\H\K(x,tn))-E(^n-l)\K(x,tn)), 

a22 = (A'(x, tn)\H\K(x, tn))-E(K(x,tn)\K(x, tn)) 

gebildet. Die Elemente atJ der symmetrischen Matrix 
ergeben sich zu 

n— 1 
(#<n- l> |£ | f f<»- l> ) = J ^ C i C j H i j , (17) 

i j 
n— 1 

^ ( n - D | ^ ( n - l ) ) = ^ CiCjSij , (18) 
i,j 

n— 1 
{\Pin~l)\H\K(x,tn)) = (19) 

i=i 
n— 1 

— ^ ^ Cj Hni , 
i=l 

n — 1 
(*(n~X)\K{x,tn)) = ^2aSin (20) 

2=1 
n — 1 

= £ c , s „ , . 

Dabei ist 

Hl3 = J dxI\(x,tl)HK(x,tj), (21) 

und 

5,; dxK(x, tl)I\(x, t j ) . (22) 

In [7] wird diese Methode mit einem dimensions-
erhaltenden Generatoransatz getestet. Dabei soll fü r 
das H-Atom die Grundzustandswel lenfunkt ion nach 

e-r = J (f>(r,b)f(b)db = J e~r2/b2 f(b)db (23) 
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erzeugt werden. Hier wird die Exponent ia l funkt ion 
durch Überlagerung kernzentrierter Gauß-Funkt io-
nen verschiedener Breite dargestellt, was im Prinzip 
einer kontinuierlichen STO-nG-Methode entspricht. 
In unserem Fall wird dieser Formalismus aber auf die 
dimensionsreduzierende Darstellung 

.*„)= / I\(x\ i i , ( f ) , . . . ) / ( * ) d * (24) 

übertragen. Obwohl in [7] für das H-Atom keine an-
geregten Zustände angegeben werden, sollte das Ver-
fahren nach Ermittlung der n Diskretisierungspunk-
te die höheren n — 1 Eigenwerte und Eigenvektoren 
liefern. Bei Verwendung des dimensionsreduzieren-
den Ansatzes (24) zeigte sich, daß schon mit we-
nigen Punkten gute Grundzustandsenergien für die 
wasserstoffanalogen Systeme erhalten werden, die 
angeregten Zustände jedoch nicht richtig wiederge-
geben werden. Trotzdem konvergierte das Verfahren 
schnell gegen die Grundzustandsenergie, wobei be-
achtet werden muß, daß es sich im Vergleich zum 
Generatoransatz für die Exponent ia l funkt ion um ein 
wesentlich komplexeres Problem handelt, bei wel-
chem eine dimensionsreduzierende Transformation 
und approximativ raumfül lende Kurven zur Anwen-
dung kommen. Daher ist zum einen auch eine höhe-
re Zahl an Diskretisierungspunkten erforderlich, zum 
anderen wird man vorerst Einbußen an Genauigkei t 
hinnehmen müssen. Die Ergebnisse für die wasser-
stoffanalogen Systeme unter Anwendung des ange-
paßten ARICKX-Verfahrens finden sich in Tabelle 4. 

Es zeigt sich, daß die Konditionszahlen der Matri-
zen gutartig sind, wodurch keine numerischen Proble-
me entstehen. Allerdings ist aufgrund der ausgedehn-
ten Integrationsbereiche die Zahl der Abtastpunkte für 
eine hinreichende Genauigkeit sehr hoch, was in Ver-
bindung mit der relativ aufwendigen Berechnung der 
Matrixelemente (s.u.) eine hohe Rechenzeit nach sich 
zieht. In [7] sind die Ausdrücke für die Über lappungs-
bzw. Hamiltonmatrix jedoch sehr einfach und auch 
die Zahl der Diskretisierungspunkte kann klein ge-
halten werden, um eine quasi exakte Energie zu er-
halten. Wie aus Tab. 4 zu ersehen ist, können auch mit 
50 Punkten noch keine guten angeregten Zustände er-
halten werden, so daß die Zahl der Punkte deutlich 
gesteigert werden muß und ein alternatives Verfahren 
notwendig wird, welches im folgenden als „Energie-
profi lmethode" bezeichnet werden soll. 

Die Energieprofilmethode 

Für angeregte Zustände sehr gut geeignet zeigte 
sich die „Energieprofi lmethode". Hier wird im Inte-
grationsbereich [0 . . . T] mit möglichst feinem Abta-
stintervall At der Ausdruck 

= H(tJ) = fK(x.u(t))HK(x.u(t))dx 
S(t,t) fK(x,u(t))K(x,u(t))dx 

berechnet, welcher als Energieerwartungswert der 
Wellenfunktion, welche mit einem einzelnen Integral-
kern dargestellt wird, verstanden werden kann. Der 
momentane Aufpunkt im Raum und der zugehörige 
Exponent werden dabei durch t festgelegt. Der Aus-
druck besitzt diese Interpretation aufgrund von (2a) 
in [2] nur, falls t' = / ist. Dieser Erwartungswert 
wird innerhalb des Integrationsbereiches in best imm-
ten Grenzen schwanken, wobei die untere Schran-
ke die Grundzustandsenergie des wasserstoffanalo-
gen Systems ist. Durch numerische Differentiation 
der entstehenden Funktion lassen sich die /-Werte 
der lokalen Minima ermitteln und ihrer Tiefe ent-
sprechend ordnen. Die Diskretisierungspunkte wer-
den dann, vom tiefsten Min imum ausgehend, an den 
zugehörigen /-Werten plaziert, wobei dieses Profil fü r 
eine gegebene Parametrisierung nur einmal zu erstel-
len ist. 

Berechnung für die Einelektronatome 

Um die Wellenfunktion der Einelektronatome bes-
ser zu erfassen, wurde nicht nur die variationelle 
Diskretisierung angewandt, sondern auch der Inte-
gralkern K(x. u(t)) durch einen ebenfalls parame-
terabhängigen Exponential term erweitert, so daß an 
Stelle von (2a) in [2] der Kern 

I<(x.u(t)) = exp { - a ( < ) | j r - u(t)|2} (26) 

zum Einsatz kommt. Die Matrixelemente H(t',t) 
bzw. S(t'.t) ergeben sich dann zu 

S(t\t) = 
a(t') + a(t) 

a(t')a(t) 
(27) 

x exp < — 
a(t') + a(t) 

\u(t')-u(t)\ 



H. Preuß und M. Pernpointner • Die Lösung der Schrödinger-Gleichung als eindimensionales Problem 

a(t')a(t) 

261 

H(t'.t) = 
a(t') + a(t) 

2 a(t')a(t) 
a(t') + a(t) 

3 
TT 

\u(t')-u(t)\2 

a(t') + a(t) 

a(t')a(t) 
(28) 

x exp < — 

2nZ 
~c*(t') + a ( t ) e X P l 

x F 0 I ( a ( t ' ) + a ( t ) ) 

a ( t ' ) + a ( t ) 

a ( t ' ) a ( t ) 

u ( t ' ) - u ( t ) |2 

u(t')-u(t) | 
Ö ( / ' ) + a(t) 

a(t')u(t') + a(t)u(t) 
a(t') + a(t) 

wobei Z die Kernladung des Einelektronatoms dar-
stellt. Für die Parametrisierung der im vierdimensio-
nalen Raum verlaufenden Kurve wurde der Ansatz 

UM = Q sin(PI7R*), i = 1, 2 , 3 , ( 2 9 ) 

a(t) = Q[s in(P 4 7r/ )+ I] + ö (30) 

als erweiterte Form gewählt. An die Stelle der Kosi-
nusfunktionen treten nun Sinusfunktionen, wodurch 
erreicht werden kann, daß für t = 0 der Integralkern 
am Ort des Kernes lokalisiert ist. Dies entspricht ei-
ner Wellenfunktionsapproximation mit nur einer am 
Zentrum lokalisierten Gauß-Funktion. Ferner werden 
durch die spezielle Wahl der Parametrisierung von 
a(t) nur Werte mit a(t) > 6 und 6 > 0 zugelassen, da 
negative Werte des Exponentialparameters auf nicht 
normierbare Ausdrücke in (26) führen würden. Die 
zugehörigen optimalen Gauß-Exponenten Q0 können 
nach [8] analytisch bestimmt werden und seien für 
die hier behandelten Einelektronsysteme mit den zu-
gehörigen Energien in Tab. 1 angegeben. 

Q0 E( Hartree) 

0 .2829 -0 .4244 
1.1318 -1 .6977 
2.5465 -3 .8197 

Tab. 1. Opt imier te Gauß-Exponen-
ten für die Einelektronsysteme H, 
He+ und Li2 + . Der Wert fü r H findet 
sich in [8]. 

Ferner ist der mögliche Ausdehnungsbereich der 
raumfüllenden Kurve unabhängig von demjenigen 
des Gauß-Exponenten, was durch zwei verschiede-
ne Parameter Q und Q erreicht wird. Es liegt so-
mit ein vierdimensionaler Hyperquader vor, welcher 

durch die Kurve möglichst gut ausgefüllt werden 
muß. Im Idealfall der vollständigen Raumfüllung 
wäre dann an jedem Raumpunkt - festgelegt durch 
u\(t). ii\(t). 113(f) - jeder mögliche Wert des Gauß-
Exponenten innerhalb des durch (30) bestimmten Be-
reiches abrufbar. Führt der an diesem Punkt nach (25) 
errechnete Energieerwartungswert zu einem tiefen lo-
kalen Minimum, wird dort ein Diskretisierungspunkt 
gesetzt. Für alle eingesetzten Punktauswahlverfahren 
berechnet sich a(t) nach 

a ( t ) = 

QO t = 0 

Q sin P 4 t t / i > 0 
(31) 

Obwohl es methodisch gesehen nicht nötig ist, den 
Punkt t = 0 gesondert zu behandeln, dient dies 
doch der Konvergenzbeschleunigung für die Grund-
zustandsenergie und widerspricht nicht der eindimen-
sionalen Formulierung. 

Ergebnisse für die Einelektronatome 

Der räumliche Ausdehnungsbereich der Integral-
kernaufpunkte wird durch Q, die maximale Steilheit 
eines Gauß-Kerns am Ort u ( t ) durch Q bestimmt. 
Daher können diffusere Zustände nur durch eine Ver-
größerung von Q besser erfaßt werden, wogegen bei 
komprimierteren Zuständen höherer Kernladungszahl 
der mögliche Bereich der Steilheit ausgedehnt werden 
muß. Man hat daher für jedes der drei betrachteten Ei-
nelektronatome die Parameter Q bzw. Q entsprechend 
zu wählen, um sowohl die kernnahen als auch die 
diffuseren Zustände gut erfassen zu können. Durch 
Testrechnungen wurden zunächst die in Tab. 2 ver-
zeichneten Parameterpaare zur Erfassung von Grund-
und angeregten Zuständen der einzelnen Systeme be-
stimmt. 

Atom Q Q 

H 3.5 3.5 
He+ 3.0 5.5 
Li2 + 2.5 7.0 

Tab. 2. Optimierte Parameter Q bzw. 
Q für die Einelektronsysteme H, He+ 

und Li2 + . 

Ferner wurde die in Teil II dieser Arbeit eingeführ-
te, nichtganzzahlige Parametrisierung eingesetzt, wo-
bei die vier Kurvenparameter folgende Werte besit-
zen: P\ = 1.033, P2 = 1.528, P 3 = 1 -909, P 4 = 2.213. 
Damit ergibt sich ein oberer Integrationsbereich von 
T = 2000. Ferner seien ab sofort die Punktzahlen mit 
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N bezeichnet , da n die betrachtete Hauptquantenzahl 
angibt. 

U m die erhal tenen Ergebnisse schneller mit den 
exakten Resultaten vergleichen zu können, seien letz-
tere in Tabelle 3 bis zur Hauptquantenzahl n = 4 
aufgeführ t . Die exakten Lösungen der Einelektron-
a tome berechnen sich nach der bekannten Glei-

mit dem Entartungsgrad 

Tab. 5. Tiefs te Energ iee igenwer te (in Hartree) der Einelek-
t ronatome fü r N = 500 Punkte mit den entsprechenden Kon-
di t ionszahlen bes t immt nach der Energieprof i lmethode. 

chung E(Z, n) = —Z /2n 
9n = n2. 

n H He+ Li2 + 

1 - 0 . 5 0 0 - 2 . 0 0 0 - 4 . 5 0 0 
2 - 0 . 1 2 5 - 0 . 5 0 0 - 1 . 1 2 5 
3 - 0 . 0 5 5 - 0 . 2 2 2 - 0 . 5 0 0 
4 - 0 . 0 3 1 - 0 . 1 2 5 - 0 . 2 8 1 

Tab. 3. Exakte Energien (in 
Hartree) der Einelektrona-
tome bis zur Hauptquan-
tenzahl n = 4. 

Zunächs t seien für die drei betrachteten Ein-
e lekt ronatome und dem Punktauswahlverfahren nach 
ARICKX die tiefsten Energieeigenwerte in Tab. 4 dar-
gestellt. 

Tab. 4. Tiefste Energiee igenwer te (in Hartree) der Ein-
e lekt ronatome fü r N = 50 Punkte, best immt nach dem 
ÄRICKX-Punktauswahlverfahren. Unter C ( H ) und C ( S ) 
sind die Kondit ionszahlen der Matrizen H(t',t) bzw. 
S(t', t) angegeben. 

n H He+ Li2 + 

1 - 0 . 4 9 7 9 8 - 1 . 9 7 8 5 9 - 4 . 4 1 0 3 9 

2 - 0 . 0 6 9 0 4 - 0 . 4 5 3 1 2 - 0 . 8 6 9 9 2 
- 0 . 0 6 2 3 4 - 0 . 3 0 8 6 6 - 0 . 2 2 7 0 3 
- 0 . 0 5 6 2 0 - 0 . 1 8 2 4 5 0 .36579 
- 0 . 0 1 2 7 4 - 0 . 0 2 7 9 5 1.88217 

C (H) 6 .48649E+02 2 .39700E+03 4 .70268E+03 
C ( S ) 4 .82893E+04 9 .67084E+04 8 .87917E+04 

Es zeigt sich, daß für dieses Punktauswahlverfah-
ren, angewandt auf den e indimensionalen Formalis-
mus, eine deutl ich verbesserte Erfassung der Grund-
zustandsenergien im Vergleich zu den Resultaten aus 
[2] auftrit t , wogegen die angeregten Zus tände noch 
nicht richtig wiedergegeben werden. Das Verfahren 
ist aufgrund der guten Kondit ionierung der Matrizen 
numerisch unproblemat isch. 

Für die gute Wiedergabe der angeregten Zustände 
erweist sich das Punktauswahlverfahren nach der 
Energieprof i lmethode als vorteilhafter. Zunächst sei-
en in Tab. 5 die Ergebnisse für N = 500 Punkte und 
obige Parameter bis zu n = 3 angegeben. 

77 H He + Li2 + 

1 - 0 . 4 8 4 6 6 - 1 . 8 4 4 9 6 -4 .34001 

2 - 0 . 1 1 5 6 2 - 0 . 4 9 9 4 2 - 1 . 1 2 3 8 3 
- 0 . 1 1 5 1 7 - 0 . 4 9 9 3 7 - 1 . 1 2 3 1 9 
- 0 . 1 1 4 9 6 - 0 . 4 9 9 0 7 - 1 . 1 2 2 9 3 
- 0 . 1 0 2 9 2 - 0 . 4 7 8 6 0 - 1 . 1 0 4 2 2 

3 0 .00766 - 0 . 2 1 0 2 4 - 0 . 4 9 8 8 6 
0.00871 - 0 . 2 0 9 6 4 - 0 . 4 9 8 7 0 
0 .00965 - 0 . 2 0 9 3 3 - 0 . 4 9 8 5 9 
0.01111 - 0 . 2 0 9 0 3 - 0 . 4 9 8 5 4 
0 .01197 - 0 . 2 0 8 8 2 - 0 . 4 9 8 4 8 
0.08021 - 0 . 1 9 2 4 6 - 0 . 4 9 6 0 5 
0 .08289 - 0 . 1 9 1 2 1 -0 .49601 
0 .08514 - 0 . 1 9 0 4 9 - 0 . 4 9 5 2 8 
0 .12097 - 0 . 1 6 7 2 1 - 0 . 4 8 7 6 3 

4 0 .12226 - 0 . 0 5 5 8 7 - 0 . 2 5 5 0 9 

C (H) 8 .0551E+13 1.5040E+14 4 .6772E+14 
C ( S ) 4 . 9481E+14 3 .4764E+14 5 .8630E+14 

Im Vergleich zu den Ergebnissen unter Anwendung 
der Punktwahl nach ARICKX verschlechtert sich der 
Grundzus tand um bis zu 133 mHartree be im He + , je-
doch erhält man speziell fü r He + und Li2 + bis zu n = 3 
sehr gute Werte fü r die angeregten Zus tände . Im Ge-
gensatz zum ARICKX-Verfahren werden die Punkte 
nicht durch Energ iemin imierung des mit de r interme-
diären Wel lenfunkt ion gebildeten Erwartungswertes 
ausgewähl t , sondern es werden nur die Diagonalgl ie-
der H(t, t)/S(t, t) betrachtet , die einer Wellenfunkt i -
onsapproximat ion mit nur e inem Kern entsprechen. 
Daher opt imier t das Verfahren nach ARICKX den 
Grundzus tand , wenn keine weiteren Einschränkun-
gen gemacht werden. Im al lgemeinen kann für ei-
nen fes tgelegten Parametersatz die Genauigkei t durch 
Erhöhung der Punktzahl verbessert werden , wobei 
beachtet werden muß, daß die Kondit ionszahlen der 
Matr izen nicht zu hoch werden . Die Genauigkei t der 
angeregten Zus tände kann ferner durch Vergrößerung 
des Parameters Q verbessert werden, wobei die Dich-
te der Kurve aber in kernnahen Bereichen verringert 
wird und die Grundzus tände schlechter werden . 

Da durch die Methode der variationeilen Diskreti-
sierung keine Einschränkungen bezüglich der Punkt-
wahl vorl iegen, können die fü r den Grundzus tand 
opt imalen ARICKX-Punkte mit den für die angereg-
ten Zus tände geeigneten Profi lpunkten kombiniert 
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Tab. 6. Energieeigenwerte (in Hartree) der Einelektronato-
me mit N = 550 kombinier ten Punkten. 

n H He + L r + 

1 - 0 . 4 9 8 3 9 - 1 . 9 7 9 0 8 - 4 . 4 1 2 7 2 

2 - 0 . 1 1 5 8 7 - 0 . 4 9 9 8 7 - 1 . 1 2 4 8 5 
- 0 . 1 1 5 4 5 - 0 . 4 9 9 8 5 - 1 . 1 2 4 7 9 
- 0 . 1 1 5 2 7 - 0 . 4 9 9 7 6 - 1 . 1 2 4 4 8 
- 0 . 1 0 6 2 9 - 0 . 4 9 7 1 1 - 1 . 1 1 3 7 5 

3 0 .00719 - 0 . 2 1 0 3 2 - 0 . 4 9 8 9 0 
0 .00748 - 0 . 2 0 9 7 4 - 0 . 4 9 8 7 2 
0 .00773 - 0 . 2 0 9 4 7 - 0 . 4 9 8 6 4 
0 .01023 - 0 . 2 0 9 3 7 - 0 . 4 9 8 5 6 
0 .01043 - 0 . 2 0 8 9 8 - 0 . 4 9 8 5 2 
0 .07715 - 0 . 1 9 3 3 1 - 0 . 4 9 6 8 0 
0 .08080 - 0 . 1 9 1 7 0 - 0 . 4 9 6 4 0 
0 .08225 - 0 . 1 9 1 0 7 - 0 . 4 9 5 7 9 
0 .11919 - 0 . 1 7 8 1 1 - 0 . 4 9 0 8 3 

4 0 .11972 - 0 . 0 5 6 1 7 - 0 . 2 5 5 4 7 

C(H) 1.0709E+14 1.6817E+14 5 .1315E+14 
C( S) 6 .6445E+14 3 .9345E+14 6 .7096E+14 

Tab. 8. Grund- und angeregte Zustände der Einelektronato-
me für N = 550 Punkte mit den besser angepaßten Q - P a -
rametern und kombinierten Punktauswahlverfahren. 

werden. Die Ergebnisse dieser Vorgehensweise fin-
den sich in Tab. 6 und vereinen die Vorteile beider 
Methoden. 

Obwohl die Kondit ionszahlen der Matrizen H und 
S bei ausschließlicher Anwendung des ARICKX-
Verfahrens in moderaten Bereichen liegen, kann 
nach Kombination mit der Energieprof i lmethode die 
Punktzahl zur Verbesserung der Resultate nicht mehr 
stark gesteigert werden. Um die angeregten Zustände 
besser zu erfassen, muß der Parameter Q ausgedehnt 
werden, wobei Q aber unverändert bleibt. In Tab. 7 
finden sich die erweiterten Parameter und in Tab. 8 die 
zugehörigen Rechnungen, wobei zur guten Erfassung 
des Grundzustandes wiederum Diskret is ierungspunk-
te nach ARICKX mit denen der Prof i lmethode kombi-
niert wurden. 

Atom Q Q 

H 5.5 3.5 
He + 4.5 5.5 
Li2 + 5.0 7.0 

Tab. 7. Modif iz ier te Q - P a r a m e t e r zur 
besseren Er fassung der angeregten 
Zustände fü r die Eine lekt ronatome. 

Hier wird deutlich, daß eine Erwei terung von Q 
zur besseren Erfassung diffuserer Zustände nötig ist, 
jedoch leichte Genauigkei tseinbußen bezüglich der 
komprimierteren Zustände in Kauf g e n o m m e n wer-
den müssen (siehe z. B. n = 2 fü r Li2 + im Vergleich 
zu Tabelle 6). 

n H He+ Li"+ n He+ Li"+ 

1 -0.49725 -1.97146 35475 4 -0.07074 -0.26847 
2 -0.11899 -0.49978 -1.12308 -0.06954 -0.26783 

-0.11878 -0.49937 -1.12115 -0.06810 -0.26730 
-0.11868 -0.49927 -1.11916 -0.06728 -0.26695 
-0.11231 -0.49626 -1.10584 -0.06709 -0.26691 

3 -0.00797 —0.21378 -0.49958 -0.06647 -0.26658 
-0.00730 -0.21362 -0.49957 -0.06599 -0.26614 
-0.00708 -0.21326 -0.49950 -0.00243 -0.24662 
-0.00528 -0.21273 -0.49945 -0.00074 -0.24622 
-0.00480 -0.21266 -0.49929 0.00224 -0.24462 

0.04887 -0.20088 -0.49817 0.00666 -0.24262 
0.05112 -0.20057 -0.49736 0.00726 -0.24179 
0.05189 -0.19879 -0.49658 0.05663 -0.22306 
0.08762 -0.18937 -0.49245 0.05732 -0.22090 

C(H) 3.9117E+10 6.9902E+10 6.2995E+09 0.05914 -0.21858 
C(S ) 3.1434E+11 2.5033E+11 1.3117E+10 0.06116 -0.20292 

Es zeigt sich an diesen Ergebnissen, daß für n = 3 
d-Zustände des He+ bzw. Li2 + und für n = 4 so-
gar / - Z u s t ä n d e des Li2 + gut erfaßt werden können. 
Ein einfach gebauter Integralkern ermöglicht somit 
im Prinzip unter Anwendung der Transformation (3) 
die Darstellung des gesamten Spektrums mittels ei-
ner eindimensionalen Erzeugenden. Obwohl im An-
satz für den Integralkern keinerlei Symmetr iee lemen-
te enthalten sind, werden doch auch Zustände hoher 
Symmetr ie erfaßt. 

Das Wasserstoffmolekülion 

Ein wichtiges molekulares Einelektronsystem ist 
das Wasserstoffmolekülion H t , dessen geometr ische 
Parameter in Abb. 1 gezeigt sind. Hier kommt als 
weiterer Freiheitsgrad der Kernabstand RAB hinzu, 
fü r den gilt: 7?AB = \RA — ES ist also auch 
die Frage zu untersuchen, ob im Rahmen der eindi-
mensionalen Darstellung eine Geometr ieopt imierung 
bezüglich des Kernabstandes möglich ist. Es wird sich 
zeigen, daß sich unter Anwendung von (1) für ver-
schiedene Kernabstände ein Min imum ergibt, wel-
ches dem in der Literatur angegebenen entspricht. 

Abb. 1. Geomet r ie des Wasser-
s toffmolekül ions . 
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Um sich a priori nicht einschränken zu müssen, 
wurde zur Berechnung der Matrixelemente für die-
ses System wiederum der erweiterte Integralkern 
(26) verwendet. Die Terme der Überlappungsmatrix 
S{t'.t) sind dann denen der Einelektronatome äqui-
valent. Für H{t'.t) ergibt sich 

Tab. 10. Energieeigenwerte von HT (in Hartree) bei Anwen-
dung der Energieprofilmethode mit a(t) = 1. RAB = Re-

H(t'J) = a ( f ' ) Q ( 0 
a(t') + a(t) 

2a(t')a(t) , 
3 7777 777\u(t ) - u(t)\ 

3 
TT 

2/r 

x exp 

exp 

a(t') + a(t) 

a(t')a(t) 

a(t') + a(i) 

x F 0 | ( a ( t ' ) + a (O) 

2tt 
exp 

a(t') + a(ty 

a(t')a(t) 
~a(t') + a(t) 

a(t')u(t') + a(t)u(t) 

a(t') + a(t) 

a(t')a(t) 
a(t') + a(t) 

xF0\(a(t') + a(t)) 

a(t') + a(t) 

a(t')u(t') + a(t)u(t) 
a(t') + a(t) 

u(t')-u(t) |2 

Die Kurvenparametrisierung für den vierdimensio-
nalen Raum wurde nun nicht mit Sinus- sondern mit 
Kosinusfunktionen angesetzt. Der Punkt t = 0 ent-
spricht somit nicht mehr einer Kernposition, wodurch 
keinerlei Einschränkung der Allgemeinheit bezüglich 
der Kurvenkonstruktion vorliegt: 

ui(t) = Qcos(Pi7Tt), i= 1 , . . . . 3 

a(t) = Q[cos(P47Ti) + \ ] + ö 
(33) 

Die in [9] angegebenen Referenzwerte für das Was-
serstoffmolekülion sind in Tab. 9 aufgeführt. 

Tab. 9. Referenzwerte für das Wasserstoffmolekülion nach 
[9]. 

Gleichgewichtsabstand Re 1.9972 a.u. = 1.06 Ä 
Elektronische Energie Ee\ für Re -1 .1033 Hartree 
Gesamtenergie E m = Eei + l / ^ e -0 .6026 Hartree 

N Ee 1 Etot cond(H) cond(S) 

100 -1 .0626 -0 .5619 0.83744E+10 0.42286E+11 
200 -1 .0787 -0 .5780 0.23654E+12 0.19505E+13 
300 -1 .0866 -0 .5859 0.12851E+13 0.13019E+14 
400 -1 .0898 -0 .5891 0.46114E+13 0.48130E+14 
500 -1 .0912 -0 .5905 0.90164E+13 0.10252E+15 
600 -1 .0923 -0 .5916 0.13377E+14 0.17657E+15 
700 -1 .0931 -0 .5924 0.25541E+14 0.32194E+15 
800 -1 .0939 -0 .5932 0.33752E+14 0.44144E+15 
900 -1 .0945 -0 .5938 0.43476E+14 0.63672E+15 

1000 -1 .0949 -0 .5942 0.61209E+14 0.96127E+15 
1100 -1 .0952 -0 .5946 0.74122E+14 0.12619E+16 
1200 -1 .0955 -0 .5948 0.96794E+14 0.17919E+16 
1300 -1 .0957 -0 .5950 0.11206E+15 0.15220E+16 
1400 -1 .0959 -0 .5952 0.13074E+15 0.16943E+16 
1500 -1 .0960 -0 .5953 0.14980E+15 0.32198E+17 

Tab. 1 1. Energieeigenwerte von H7 (in Hartree) mit opti-
miertem A = 0.8 und /?AB = •-Rc. 

N Ee 1 E\oi cond(H) cond(S) 

100 -1.0764 -0.5757 0.42162E+11 0.20835E+12 
200 -1.0853 -0.5846 0.45378E+13 0.29722E+14 
300 -1.0904 -0.5897 0.33290E+14 0.25519E+15 
400 -1.0921 -0.5914 0.11757E+15 0.10934E+16 
500 -1.0930 -0.5923 0.34215E+15 0.28362E+16 
600 -1.0938 -0.5931 0.93500E+15 0.11044E+17 
700 -1.0945 -0.5938 0.10456E+16 0.66340E+17 
800 -1.0951 -0.5944 0.36744E+16 0.14946E+17 
900 -1.0955 -0.5948 0.51291E+16 0.86570E+17 

Zunächst wurde dieses System mit der Vereinfa-
chung a ( i ) = 1 berechnet. Damit werden die Para-
meter Q und P 4 zunächst nicht benötigt. Die Kurven-
parametrisierung erfolgt mit P\ - 1.052, P2 = 1.876, 
P3 = 2.371, Q = 4, wobei wegen (33) nur eine In-
tegrationsgrenze von T = 1000 erforderlich ist. Die 
Ergebnisse finden sich in Tabelle 10. 

Schon mit dem einfachen Ansatz a ( f ) = 1 können 
bei N = 100 Punkten 93.2% der Gesamtenergie 
Et0{ erhalten werden und bei 1000 Punkten sind 
dies 98.6%. Trotz starker Steigerung der Punktzahlen 
nähert man sich nur langsam dem exakten Wert von 
-0 .6026 Hartree und man stößt dann an die Grenzen 
der numerischen Berechenbarkeit, wie an den hohen 
Konditionszahlen der beteiligten Matrizen zu sehen 
ist. Eine schnellere Konvergenz bezüglich der Punkt-
zahl wird durch Optimierung von a(t) = a mit a 4 1 
erreicht. Die Werte für a ( t ) = a = 0.8 finden sich in 
Tabelle 11. 
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Tab. 12. Energieeigenwerte von Ht (in Hartree) mit vollem 
Integralkern (26) und R.\B = 

P4 Ee 1 Etol cond(H) cond(S) 

2.781 -1 .0728 -0 .5721 0.83399E+13 0.95367E+13 
2.782 -1 .0793 -0 .5786 0.27504E+14 0.94082E+12 
2.783 -1 .0346 -0 .5339 0.79861E+13 0.67433E+13 
2.784 -1 .0705 -0 .5698 0.21455E+13 0.22180E+13 
2.785 -1 .0732 -0 .5725 0.23914E+13 0.35716E+12 
2.786 -1 .0837 -0 .5830 0.52405E+13 0.18465E+13 
2.787 -1 .0742 -0 .5735 0.38255E+12 0.30564E+12 
2.788 -1 .0771 -0 .5765 0.16710E+14 0.10760E+13 
2.789 -1 .0711 -0 .5704 0.63707E+12 0.11308E+13 
2.790 -1 .0467 -0 .5460 0.31893E+12 0.36877E+12 

Aufgrund der Opt imierung sind nun weniger Punk-
te bei gleicher Qualität erforderlich, eine Steige-
rung der Punktzahl über N = 900 war jedoch nicht 
mögl ich. Interessanterweise konnte im Gegensatz zu 
den Einelektronatomen unter Verwendung des vol-
len Integralkernes (26) mit dem parameterabhängigen 
Exponenten a(t) und der zugehörigen Kurvenpara-
metris ierung (33) keine Verbesserung erzielt werden. 
Die Abhängigkei t des tiefsten Energieeigenwertes 
vom Parameter P 4 ist unsystematisch und erschwert 
die Suche nach e inem opt imalen P 4 , wie Tab. 12 für 
Q = 2 und N = 300 zeigt (die anderen Parameter 
wurden unverändert gelassen). 

Bei Variation von P 4 über einen größeren Bereich 
konnte nie ein Energiewert Ee 1 < — 1.0900 Hartree 
erhalten werden. Es darf angenommen werden, daß 
im Prinzip eine Flexibil isierung des Integralkernes 
mittels a ( t ) eine Verbesserung erbringen sollte. Da 
nun aber die Kurve u(t) Element des R 4 ist, wird 
die Raumfü l lung und damit die Abtastung der rele-
vantesten Punkte nicht mehr so gut sein, wie im Fall 
u(t) E R\ 

Zur Geometr ieopt imierung des Moleküls wurden 
die Parameter P\ — P3 und Q unverändert übernom-
men, wobei a(t) = 0 .8 gesetzt wurde. Die Kurve u(t) 
ist somit Element des R . Die jeweil igen Energien für 
verschiedene Kernabstände wurden mit einer Punkt-
zahl von N = 500 ermittelt , wobei für jeden Kernab-
stand das Energieprofil neu zu erzeugen ist, da sich 
die Lage der Kerne relativ zur Kurve ändert. Obwohl 
die Kurvenparametr is ierung bei den einzelnen Kern-
abständen unverändert bleibt, verschieben sich doch 
die lokalen Minima. In Abb. 2 sind graphisch für ver-
schiedene Kernabstände in Schritten von 0.01 a.u. die 
sich ergebenden Gesamtenergien aufgetragen. Dabei 

Abb. 2. Gesamtenergie des Ht Molekülions in Abhängigkeit 
vom Kernabstand /?AB mit einem Minimum bei Re nach [9]. 

wird deutlich, daß im Rahmen der e indimensionalen 
Formulierung auch eine gute Geometr ieopt imierung 
erfolgen kann. 

Wellenfunkt ionsapproximationen 

Nachdem mittels (8) zum Eigenwert die Ko-
effizienten CkA best immt wurden, kann die nach (9) 
best immte Wellenfunkt ionsapproximat ion mit der be-
kannten analytischen Lösung verglichen werden. Für 
das He+ - Ion und die zugehörigen optimierten Parame-
ter aus Tab. 2 wurde die l s - und 2s-Wel lenfunkt ion 
nach (9) best immt. In Abb. 3 sind für diese beiden 
Fälle die Wellenfunkt ionen graphisch wiedergegeben. 

Die Energiedifferenz zur exakten Grundzustand-
senergie des He + beträgt nach Tab. 8 29 mHartree. 
Diese Differenz ist im Vergleich zur Qualität der 
angeregten Zustände doch noch beträchtlich. Daher 
ist es auch verständlich, daß im kernnahen Bereich 
die Abweichungen der berechneten Wellenfunkt io-
nen am größten sind. Während die exakte Wellen-
funktion den Cusp aufweis t , verhält sich die eindi-
mensional erzeugte Funktion gaußartig. Bei größe-
ren Werten für R wird dann die Übere ins t immung 
besser. Man kann dieses Problem verringern, wenn 
man die Kurvenparametr is ierung derart anlegt, daß 
bei ganzzahligen Vielfachen von T jewei ls verschie-
den gewichtete Integralkerne am Kernort zu liegen 
kommen, während innerhalb des Integrationsberei-
ches [0 . . . T] die schon bekannte Parametris ierung 
einsetzt. Dies ist jedoch nur eine programmtechnische 
Frage und berührt nicht das Prinzip der e indimensio-
nalen Darstellung. 
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Abb. 3. Vergleich zwischen exakter und eindimensional generierter \s bzw. 2s Wellenfunktion für He+ in atomaren 
Einheiten. Die exakten Wellenfunktionen weisen den Cusp am Kernort auf. 
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