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Solving the Schrodinger-equation as a One-dimensional Problem.
III. One-electron Systems withImproved Discretization Algorithms

After the calculations on one-electron atoms with simple discretization methods in part II of
this work, more powerful techniques are presented here. The method of ARICKX was transferred
to our one-dimensional calculations, and a fast ,.energy profile method* is used with which the
excited states of one-electron atoms can be reproduced with high accuracy. The simplest polyatomic
particle, H3, can be integrated into the formalism without any difficulties because of the general
applicability of the integral kernel. Good results are available for this system, and a geometry
optimization yields the same core distance as given in the literature.
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In [1] wurde ein Formalismus zur eindimensio-
nalen Darstellung der Schrodinger-Gleichung vor-
gestellt, bei welchem unter Anwendung einer Inte-
graltransformation und approximativ raumfiillender
Kurven die HILL- WHEELER-Gleichung in eindimen-
sionaler Darstellung resultiert. Mit dieser Gleichung
wurden in [2], unter Anwendung einer bestimmten
Kurvenparametrisierung, Testrechnungen an Einelek-
tronatomen vorgenommen. Diese Parametrisierung
fiihrt zwar nicht auf eine fraktale Struktur, kann je-
doch fiir die praktische Anwendung beliebig dicht ge-
macht werden. Als erste Losungsmethode der Gl. (2)
in [2] wurde eine Diskretisierungsmethode durch-
gefiihrt, bei welcher die Punkte im betreffenden Inte-
grationsbereich statistisch verteilt waren. Gerade im
Zusammenhang mit den sogenannten Generatorko-
ordinatenmethoden [3] im Bereich der Kernphysik
sind aber verbesserte Verfahren fiir die Behandlung
der HiLL-WHEELER-Gleichung im Einsatz, die auf
die eindimensionale Formulierung tibertragen wur-
den. Durch Einfiihrung einer besonders schnellen Me-
thode zur Punkterzeugung konnten auch angeregte
Zustidnde mit hoher Genauigkeit erfaSt werden.
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Variationelle Diskretisierung

Die einfachste Moglichkeit, die eindimensionale
Form der HiLL- WHEELER-Gleichung

/[H(t’,t) — S, H)If®)dt=0 (1)

zu behandeln, besteht in der Wahl von &quidistant
verteilten Diskretisierungspunkten ¢, und Auswer-
tung der Gleichung an diesen Punkten (siehe zum
Beispiel [4]):

R LH(E, 1) — eS(E, 8)1f(t) =0,
k=1

2)

t=1,...,n.

Auch kann das auftretende Integral mittels eines
GauB-Legendre-Quadraturverfahrens behandelt wer-
den, wobei entsprechende Gewichtsfaktoren auftre-
ten. Beide Integraldiskretisierungen fiihrten bei An-
wendung auf (1) in Verbindung mit approximativ
raumfiillenden Kurven zu schnell einsetzenden linea-
ren Abhingigkeiten, und es konnte keine befriedigen-
de Losung erhalten werden. Da die Kurve den Gene-
ratorraum der Integraltransformation nur approxima-
tiv erfassen kann und bestimmte Punkte auf dieser
Kurve schneller zur Konvergenz fiihren als andere,
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wird ein flexibleres Verfahren der Diskretisierung er-
forderlich. Im Falle der variationellen Diskretisierung
werden diese Punkte so gewihlt, daf3 eine moglichst
schnelle Konvergenz des zugehorigen tiefsten Ener-
gieeigenwertes erreicht wird. Broeckhove und Deu-
mens geben in [5] eine mathematische Rechtfertigung
dieser Vorgehensweise, welche sich problemlos auf
die eindimensionale Darstellung iibertragen laBt.
Durch die Wellenfunktion ¥(x) wird der System-
zustand vollstidndig charakterisiert, wobei x die dyna-
mischen Koordinaten darstellen. Wird ¥ (x) nun nach

U(x) = / K (x,u(t) f(1) dt 3)

generiert, so bildet
I'={K(x.u()|t € R} 4)

eine kontinuierliche Familie von Zustinden, und
durch Bildung der linearen Hiille H = LH{I} ent-
steht ein Unter-Hilbert-Raum des £*. Da Hilbert-
Ridume gemdl der Theorie separabel sind, existiert
als Basis von H eine abzdhlbare Untermenge von
Zustianden K (x. u(t;)), fir die gilt

H =LH{Io} mit [y = {K(x.u(t,)|i € N} C I.(5)

Somit kann ¥(x) auch geschrieben werden als

o0

V)= e K u(t)). ()

=1

Das Variationsprinzip zur Ermittlung der optimalen
Koeffizienten ¢; fiihrt nun auf die unendlichdimen-
sionale Gleichung

S HE 1) — S t)ler =0, i=1,.... 0, (7)
k=1

welche zur numerischen Behandlung auf eine endli-
che Ordnung n gebracht werden muf3. Die Wahl der
t, ist nun aber beliebig, da kein spezielles Verfah-
ren zur Integraldiskretisierung vorausgesetzt wurde.
So konnen die ¢; in der Weise variationell bestimmt
werden, daf} die Gleichung endlicher Ordnung

D H(E t) — xSt ti)lexa =0,

k=1

(8)
,A=1,...n
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mit moglichst wenig Punkten zum tiefsten Energie-
eigenwert < konvergiert. Ebenso kann aber die Wahl
der Punkte auf die moglichst gute Erfassung der an-
geregten Zustdnde hin optimiert werden. Beide Sétze
von Punkten lassen sich dann ohne Schwierigkeiten
kombinieren (s.u.). In jedem Fall ergibt sich die Wel-
lenfunktion ¥, zum Eigenwert A nach Lésung von
(8) mittels

n

7, (x) ~ Z oK (x.uty)), t; eR. 9)

=1

Die Gleichung (8), welche mit Gl. (3) in [2] identisch
ist, dient nun in Verbindung mit speziellen Punktaus-
wahlverfahren als Ausgangspunkt fiir die verbesser-
ten Rechnungen an Einelektronsystemen.

Punktauswahlverfahren

Wie oben gezeigt, besteht nun die Moglichkeit,
durch giinstige Verfahren die Diskretisierungspunkte
derart auszuwéhlen, daf eine schnellstmogliche Kon-
vergenz eintritt.

Bei der Methode nach Caurier [6], welche auf un-
ser Problem iibertragen wurde, wird der erste Diskre-
tisierungspunkt an der Stelle ¢, so bestimmt, daf3 der
Ausdruck

(P|H|P)

B =Ty T

(K (x, t)|H|K(x, 1))
(I\'(x. f] )|I\'(x. f])>

(10)

zum Minimum wird, wobei als vereinfachte Schreib-
weise N'(x.t;) anstatt I\(x,u(t;)) bei festgelegter
funktionaler Form von u(t;) verwendet wird. Zur Er-
mittlung des nédchsten Punktes ¢, wird mit den zu-
gehorigen Integralkernen A'(x,?;) und A'(x. ¢,) eine
2 x 2 Hamiltonmatrix der Form

(K. t)|H K. 1)) (Kx, t)|H|K(x, ty)) -
(K(x.to)| H|K(x. 1)) (K(x. 1) H|K(x, t,))

aufgebaut und diagonalisiert. Wiederum wird ¢, in-
nerhalb des Integrationsbereiches so lange variiert,
bis der kleinste Eigenwert von (11) minimal wird.
Auf diese Weise fahrt man fort, wobei fiir den n-ten
Punkt jeweils das n x n Problem zu 16sen ist. Durch
die Verwendung raumfiillender Kurven ist der zu dis-
kretisierende Integrationsbereich jedoch sehr ausge-
dehnt, wodurch eine grof3e Zahl an Abtastpunkten zu
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erfassen ist und dieses Verfahren dadurch sehr re-
chenintensiv wird. Des weiteren werden viele Dis-
kretisierungspunkte bendtigt (n > 100), um bei der
Abtastung des drei- oder hoherdimensionalen Gene-
ratorraumes die notige Genauigkeit zu erreichen. Die
feine Abtastrate des Integrationsbereiches und die ho-
he Zahl benétigter Diskretisierungspunkte motivier-
ten den Einsatz schnellerer Verfahren. Hier ist eine
Methode von Arickx [7] zu nennen, welche fiir un-
sere Problemstellung implementiert wurde, und ein
Energieprofilverfahren, welches auch die angereg-
ten Zustinde der Einelektronatome in sehr guter Wei-
se wiederzugeben vermag.

Implementation des Arickx-Verfahrens

Das in [7] beschriebene Verfahren wurde von uns
in folgender Weise auf die eindimensionalisierte Dar-
stellung angewandt:

Der erste Diskretisierungspunkt ¢; wird nun - wie
bei Caurier - so bestimmt, daf die Energie

Hy(t)  [dxK( t)HK (x,t))

Mgy —
TAMUIES Sut)  [dxK(x, t)K(x,t)

(12)
am Testpunkt ¢; ein Minimum wird. Als erste Wel-
lenfunktionsapproximation kann somit

1

11

v D(x) = K(x,t)) (13)

mit dem ersten Punkt ¢; angesehen werden. Zur Be-
stimmung der ndchsten Punkte wird eine Testfunktion
&(x) mit dem Testpunkt 7 durch

2x) = ¥V + e, K (x,7)

L (14)
=c K, t)+cK(x,t)
konstruiert, welche den Energieerwartungswert £
liefert.

Die Bildung der Ausdriicke dE /dc| bzw. dE/dc;
fiihrt auf ein 2 x 2 Sakularproblem. Auf diese Weise
erhilt man ¢, und eine Approximation ¥ (x):

TOx) = 7V @) + K (x. 1) (15)
Die Koeffizienten ¢; und c, ergeben sich nach jeder
Bestimmung des Testpunktes neu. Auch fiir den n-ten
Punkt 16st man nur das 2 x 2 Sdkularproblem, woge-
gen man bei Caurier das vollstidndige n x n Problem
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zu 16sen hat. Das 2 x 2 Problem wird fiir den n-ten
Testpunkt nach

ay  ap
ap  ax
mit

ay = (g,(n—l)|]’j‘[|w(n—l)>__E<Lp(n*1)lw(n—l)>‘
a1p = (T V|H|K(x,t,)) - E(F" VK (x,t,)),
axn = (K(x, t,)|H|K(x,t,)) - E(K(x,t,)|K(x,t,))

(16)

gebildet. Die Elemente a;; der symmetrischen Matrix
ergeben sich zu

n—1
<W(n,~1)|fflw("_”> = ZCichij. (17)
1,9
n—1
<w(n—l)|w(”_l)> = ZCiC]Si]‘, (18)
i,J
n—I1
<¢(”_”|I:[|I\V(X,tn)> = chHm (19)
=1
n—I
= ZCiHm,‘q
=1
n—1
(Q/(”_I)u{(x,tn)) = ZC,‘SM (20)
=1
n—1
— ZCiSm‘.
=1
Dabei ist
Hy; = /dx[{(x.tl-)I:IIx'(x.tj). (21)
und
Sy = / dxeK (x, 1)K (x, 1). (22)

In [7] wird diese Methode mit einem dimensions-
erhaltenden Generatoransatz getestet. Dabei soll fiir
das H-Atom die Grundzustandswellenfunktion nach

7= / o(r,b)f(b)db = / e~ fbydb  (23)
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erzeugt werden. Hier wird die Exponentialfunktion
durch Uberlagerung kernzentrierter GauB-Funktio-
nen verschiedener Breite dargestellt, was im Prinzip
einer kontinuierlichen STO-nG-Methode entspricht.
In unserem Fall wird dieser Formalismus aber auf die
dimensionsreduzierende Darstellung

T

W(xl ..... x”) = /[\'(X| ..... u](t)~ W% )f(f) dt (24)

0

tibertragen. Obwohl in [7] fiir das H-Atom keine an-
geregten Zustdnde angegeben werden, sollte das Ver-
fahren nach Ermittlung der n Diskretisierungspunk-
te die hoheren n — 1 Eigenwerte und Eigenvektoren
liefern. Bei Verwendung des dimensionsreduzieren-
den Ansatzes (24) zeigte sich, dal schon mit we-
nigen Punkten gute Grundzustandsenergien fiir die
wasserstoffanalogen Systeme erhalten werden, die
angeregten Zustidnde jedoch nicht richtig wiederge-
geben werden. Trotzdem konvergierte das Verfahren
schnell gegen die Grundzustandsenergie, wobei be-
achtet werden muf, dal es sich im Vergleich zum
Generatoransatz fiir die Exponentialfunktion um ein
wesentlich komplexeres Problem handelt, bei wel-
chem eine dimensionsreduzierende Transformation
und approximativ raumfiillende Kurven zur Anwen-
dung kommen. Daher ist zum einen auch eine hdhe-
re Zahl an Diskretisierungspunkten erforderlich, zum
anderen wird man vorerst Einbuflen an Genauigkeit
hinnehmen miissen. Die Ergebnisse fiir die wasser-
stoffanalogen Systeme unter Anwendung des ange-
pabten ARICKX-Verfahrens finden sich in Tabelle 4.
Es zeigt sich, daf die Konditionszahlen der Matri-
zen gutartig sind, wodurch keine numerischen Proble-
me entstehen. Allerdings ist aufgrund der ausgedehn-
ten Integrationsbereiche die Zahl der Abtastpunkte fiir
eine hinreichende Genauigkeit sehr hoch, was in Ver-
bindung mit der relativ aufwendigen Berechnung der
Matrixelemente (s.u.) eine hohe Rechenzeit nach sich
zieht. In [7] sind die Ausdriicke fiir die Uberlappungs-
bzw. Hamiltonmatrix jedoch sehr einfach und auch
die Zahl der Diskretisierungspunkte kann klein ge-
halten werden, um eine quasi exakte Energie zu er-
halten. Wie aus Tab. 4 zu ersehen ist, konnen auch mit
50 Punkten noch keine guten angeregten Zustidnde er-
halten werden, so daf die Zahl der Punkte deutlich
gesteigert werden muf} und ein alternatives Verfahren
notwendig wird, welches im folgenden als ..Energie-
profilmethode™ bezeichnet werden soll.
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Die Energieprofilmethode

Fiir angeregte Zustidnde sehr gut geeignet zeigte
sich die ,.Energieprofilmethode”. Hier wird im Inte-
grationsbereich [0 . .. T'] mit moglichst feinem Abta-
stintervall At der Ausdruck

Ht.t) [ KG.u@)HK(x u(t)) dx

E(f): S(tt) - f[\'(x‘u(z‘))]{(x.u(t))dx

(25)

berechnet, welcher als Energieerwartungswert der
Wellenfunktion, welche mit einem einzelnen Integral-
kern dargestellt wird, verstanden werden kann. Der
momentane Aufpunkt im Raum und der zugehorige
Exponent werden dabei durch ¢ festgelegt. Der Aus-
druck besitzt diese Interpretation aufgrund von (2a)
in [2] nur, falls ¢ = t ist. Dieser Erwartungswert
wird innerhalb des Integrationsbereiches in bestimm-
ten Grenzen schwanken, wobei die untere Schran-
ke die Grundzustandsenergie des wasserstoffanalo-
gen Systems ist. Durch numerische Differentiation
der entstehenden Funktion lassen sich die ¢-Werte
der lokalen Minima ermitteln und ihrer Tiefe ent-
sprechend ordnen. Die Diskretisierungspunkte wer-
den dann, vom tiefsten Minimum ausgehend, an den
zugehorigen ¢-Werten plaziert, wobei dieses Profil fiir
eine gegebene Parametrisierung nur einmal zu erstel-
len ist.

Berechnung fiir die Einelektronatome

Um die Wellenfunktion der Einelektronatome bes-
ser zu erfassen, wurde nicht nur die variationelle
Diskretisierung angewandt, sondern auch der Inte-
gralkern A'(x,u(t)) durch einen ebenfalls parame-
terabhidngigen Exponentialterm erweitert, so daf3 an
Stelle von (2a) in [2] der Kern

K (x.u(t)) = exp { —a(t)|x — u(t)*} (26)

zum Einsatz kommt. Die Matrixelemente H(t',t)
bzw. S(t'. t) ergeben sich dann zu

[IS11%}

SH.H = | ————
IE 1) (o(f’)+a(f)>

a(tHa(t) , s
- A —u* .
X exp{ a(z")+a(z‘)|u(” u(t)| }

(27)
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Ht' 1) = a(t)a(t)
a(t’) + a(t)
" B 2a(t")al(t)
a(t') + alt)

(o)
X —_—
a(t’) +a(t)

y 3 atHa(t)
R a(t’)+ al(t)

2rZ { a(ta(t)
at’)+ a(t) a(t’)+ al(t)

a(tHu(t) + a(tHu(t) "}

lu(t') — u(f)P}

(S 108

(28)
lu(t') — um,z}

lu(t') — u(t)iz}

x F )+ a(t
o{(a( )+ a(t)) o) + o)
wobei Z die Kernladung des Einelektronatoms dar-
stellt. Fiir die Parametrisierung der im vierdimensio-
nalen Raum verlaufenden Kurve wurde der Ansatz

(29)
(30)

u;i(t)
a(t)

Qsin(Prt), i =1, 2, 3,
Q[sin(Pymt) + 1]+ 6

als erweiterte Form gewihlt. An die Stelle der Kosi-
nusfunktionen treten nun Sinusfunktionen, wodurch
erreicht werden kann, daB fiir t = O der Integralkern
am Ort des Kernes lokalisiert ist. Dies entspricht ei-
ner Wellenfunktionsapproximation mit nur einer am
Zentrum lokalisierten Gau3-Funktion. Ferner werden
durch die spezielle Wahl der Parametrisierung von
a(t) nur Werte mit a(t) > 6 und 6 > 0 zugelassen, da
negative Werte des Exponentialparameters auf nicht
normierbare Ausdriicke in (26) fiihren wiirden. Die
zugehorigen optimalen GauB3-Exponenten o konnen
nach [8] analytisch bestimmt werden und seien fiir
die hier behandelten Einelektronsysteme mit den zu-
gehorigen Energien in Tab. 1 angegeben.

Tab. 1. Optimierte Gau3-Exponen-
ten fiir die Einelektronsysteme H,

He* und Li**. Der Wert fiir H findet

oo  E(Hartree)

0.2829 -0.4244 le™
1.1318 -1.6977 sich in [8].
2.5465 -3.8197

Ferner ist der mogliche Ausdehnungsbereich der
raumfiillenden Kurve unabhingig von demjenigen
des GauB-Exponenten, was durch zwei verschiede-
ne Parameter Q und Q erreicht wird. Es liegt so-
mit ein vierdimensionaler Hyperquader vor, welcher

durch die Kurve moglichst gut ausgefiillt werden
muf3. Im Idealfall der vollstindigen Raumfiillung
wire dann an jedem Raumpunkt - festgelegt durch
wy(t), ui(t). us(t) - jeder mogliche Wert des Gaul-
Exponenten innerhalb des durch (30) bestimmten Be-
reiches abrufbar. Fiihrt der an diesem Punkt nach (25)
errechnete Energieerwartungswert zu einem tiefen lo-
kalen Minimum, wird dort ein Diskretisierungspunkt
gesetzt. Fiir alle eingesetzten Punktauswahlverfahren
berechnet sich a(t) nach

t=0

0 31
at)=49 . 3D

QsinPyrt t>0
Obwohl es methodisch gesehen nicht notig ist, den
Punkt ¢ = 0 gesondert zu behandeln, dient dies
doch der Konvergenzbeschleunigung fiir die Grund-
zustandsenergie und widerspricht nicht der eindimen-
sionalen Formulierung.

Ergebnisse fiir die Einelektronatome

Der rdumliche Ausdehnungsbereich der Integral-
kernaufpunkte wird durch @), die maximale Steilheit
eines GauB-Kerns am Ort u(t) durch Q bestimmt.
Daher konnen diffusere Zustinde nur durch eine Ver-
groBerung von @ besser erfalit werden, wogegen bei
komprimierteren Zustdanden hoherer Kernladungszahl
der mogliche Bereich der Steilheit ausgedehnt werden
mulB. Man hat daher fiir jedes der drei betrachteten Ei-
nelektronatome die Parameter Q bzw. Q entsprechend
zu wihlen, um sowohl die kernnahen als auch die
diffuseren Zustinde gut erfassen zu konnen. Durch
Testrechnungen wurden zunichst die in Tab. 2 ver-
zeichneten Parameterpaare zur Erfassung von Grund-
und angeregten Zustinden der einzelnen Systeme be-
stimmt.

Tab. 2. Optimierte Parameter () bzw.

Atom Q @

A Q fiir die Einelektronsysteme H, He"
H 3535 undLi®

He* 3.0 55

Li* 25 70

Ferner wurde die in Teil II dieser Arbeit eingefiihr-
te, nichtganzzahlige Parametrisierung eingesetzt, wo-
bei die vier Kurvenparameter folgende Werte besit-
zen: Py = 1.033, P, = 1.528, P; = 1.909, P, =2.213.
Damit ergibt sich ein oberer Integrationsbereich von
T =2000. Ferner seien ab sofort die Punktzahlen mit
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N bezeichnet, da n die betrachtete Hauptquantenzahl
angibt.

Um die erhaltenen Ergebnisse schneller mit den
exakten Resultaten vergleichen zu kdnnen, seien letz-
tere in Tabelle 3 bis zur Hauptquantenzahl n = 4
aufgefiihrt. Die exakten Losungen der Einelektron-
atome berechnen sich nach der bekannten Glei-
chung E(Z.n) = —Z?/2n? mit dem Entartungsgrad
gn =N°.

Tab. 3. Exakte Energien (in

n H He” Li™ Hartree) der Einelektrona-
I -0.500 -2.000 —4.500 ~[Ome bis zur Hauptquan-
2 -0.125 -0.500 -1.125 -

3 -0.055 -0.222 -0.500

4 -0.031 -0.125 -0.281

Zunichst seien fiir die drei betrachteten Ein-
elektronatome und dem Punktauswahlverfahren nach
ARICKX die tiefsten Energieeigenwerte in Tab. 4 dar-
gestellt.

Tab. 4. Tiefste Energieeigenwerte (in Hartree) der Ein-
elektronatome fiir N = 50 Punkte, bestimmt nach dem
ARICKX-Punktauswahlverfahren. Unter C'(H) und C'(S)
sind die Konditionszahlen der Matrizen H(t'.t) bzw.
S(t', t) angegeben.

n H He' Li**
1 -0.49798 ~1.97859 —4.41039
2 -0.06904 —0.45312 -0.86992
—0.06234 ~0.30866 -0.22703
-0.05620 —0.18245 0.36579
-0.01274 ~0.02795 1.88217
C(H) 6.48649E+02  2.39700E+03  4.70268E+03
C(S) 4.82893E+04  9.67084E+04  8.87917E+04

Es zeigt sich, daB fiir dieses Punktauswahlverfah-
ren, angewandt auf den eindimensionalen Formalis-
mus, eine deutlich verbesserte Erfassung der Grund-
zustandsenergien im Vergleich zu den Resultaten aus
[2] auftritt, wogegen die angeregten Zustinde noch
nicht richtig wiedergegeben werden. Das Verfahren
ist aufgrund der guten Konditionierung der Matrizen
numerisch unproblematisch.

Fiir die gute Wiedergabe der angeregten Zustiande
erweist sich das Punktauswahlverfahren nach der
Energieprofilmethode als vorteilhafter. Zunichst sei-
en in Tab. 5 die Ergebnisse fiir N' = 500 Punkte und
obige Parameter bis zu n = 3 angegeben.
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Tab. 5. Tiefste Energieeigenwerte (in Hartree) der Einelek-
tronatome fiir NV = 500 Punkte mit den entsprechenden Kon-
ditionszahlen bestimmt nach der Energieprofilmethode.

n H He* Li**

1 —0.48466 —1.84496 434001

2 ~0.11562 049942 ~1.12383

~0.11517 ~0.49937 _1.12319

~0.11496 049907 ~1.12293

~0.10292 —0.47860 110422

3 0.00766 ~0.21024 —0.49886

0.00871 ~0.20964 —0.49870

0.00965 020933 —0.49859

001111 020903 —0.49854

001197 020882 049848

0.08021 —0.19246 —0.49605

0.08289 019121 049601

0.08514 —0.19049 049528

0.12097 ~0.16721 048763

4 0.12226 005587 ~0.25509
C(H)  80551E+13  15040E+14  4.6772E+14
C(S)  49481E+14  34764E+14  5.8630E+14

Im Vergleich zu den Ergebnissen unter Anwendung
der Punktwahl nach ARICKX verschlechtert sich der
Grundzustand um bis zu 133 mHartree beim He™, je-
doch erhilt man speziell fiir He* und Li** biszun = 3
sehr gute Werte fiir die angeregten Zustiande. Im Ge-
gensatz zum ARICKX-Verfahren werden die Punkte
nicht durch Energieminimierung des mit der interme-
didren Wellenfunktion gebildeten Erwartungswertes
ausgewdhlt, sondern es werden nur die Diagonalglie-
der H(t,t)/S(t,t) betrachtet, die einer Wellenfunkti-
onsapproximation mit nur einem Kern entsprechen.
Daher optimiert das Verfahren nach ARICKX den
Grundzustand, wenn keine weiteren Einschrinkun-
gen gemacht werden. Im allgemeinen kann fiir ei-
nen festgelegten Parametersatz die Genauigkeit durch
Erhohung der Punktzahl verbessert werden, wobei
beachtet werden mufB}, daB3 die Konditionszahlen der
Matrizen nicht zu hoch werden. Die Genauigkeit der
angeregten Zustidnde kann ferner durch Vergroerung
des Parameters () verbessert werden, wobei die Dich-
te der Kurve aber in kernnahen Bereichen verringert
wird und die Grundzustinde schlechter werden.

Da durch die Methode der variationellen Diskreti-
sierung keine Einschridnkungen beziiglich der Punkt-
wahl vorliegen, konnen die fiir den Grundzustand
optimalen ARICKX-Punkte mit den fiir die angereg-
ten Zustinde geeigneten Profilpunkten kombiniert
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Tab. 6. Energieeigenwerte (in Hartree) der Einelektronato-
me mit V = 550 kombinierten Punkten.

n H He* Li*

I 049839 —1.97908 441272

2 ~0.11587 —0.49987 ~1.12485

~0.11545 —0.49985 ~1.12479

—0.11527 0.49976 _1.12448

~0.10629 0.49711 _1.11375

3 0.00719 021032 ~0.49890

0.00748 ~0.20974 049872

0.00773 020947 —0.49864

0.01023 020937 —0.49856

0.01043 ~0.20898 —0.49852

0.07715 ~0.19331 049680

0.08080 ~0.19170 —0.49640

0.08225 ~0.19107 049579

0.11919 —0.17811 —0.49083

4 0.11972 ~0.05617 ~0.25547
C(H) 10709E+14  16817E+14  5.1315E+14
C(S)  6.6445E+14  3.9345E+14  6.7096E+14

werden. Die Ergebnisse dieser Vorgehensweise fin-
den sich in Tab. 6 und vereinen die Vorteile beider
Methoden.

Obwohl die Konditionszahlen der Matrizen H und
S bei ausschlieBlicher Anwendung des ARICKX-
Verfahrens in moderaten Bereichen liegen, kann
nach Kombination mit der Energieprofilmethode die
Punktzahl zur Verbesserung der Resultate nicht mehr
stark gesteigert werden. Um die angeregten Zustidnde
besser zu erfassen, muf3 der Parameter () ausgedehnt
werden, wobei Q aber unverindert bleibt. In Tab. 7
finden sich die erweiterten Parameter und in Tab. 8 die
zugehorigen Rechnungen, wobei zur guten Erfassung
des Grundzustandes wiederum Diskretisierungspunk-
te nach ARICKX mit denen der Profilmethode kombi-
niert wurden.

Tab. 7. Modifizierte Q-Parameter zur

Atom Q Q

besseren Erfassung der angeregten
H 55 35 Zustdnde fiir die Einelektronatome.
He* 45 55
Li* 5.0 7.0

Hier wird deutlich, daf eine Erweiterung von @)
zur besseren Erfassung diffuserer Zustidnde notig ist,
jedoch leichte Genauigkeitseinbuf3en beziiglich der
komprimierteren Zustdnde in Kauf genommen wer-
den miissen (siehe z. B. n = 2 fiir Li>* im Vergleich
zu Tabelle 6).
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Tab. 8. Grund- und angeregte Zustinde der Einelektronato-
me fir N = 550 Punkte mit den besser angepaliten Q-Pa-
rametern und kombinierten Punktauswahlverfahren.

n H He* LiZ* n  He* Li%t

1 -0.49725 -1.97146 —4.35475 4 -0.07074 -0.26847

2 -0.11899 -0.49978 -1.12308 -0.06954 -0.26783
-0.11878 —-0.49937 -1.12115 -0.06810 -0.26730
-0.11868 -0.49927 -1.11916 -0.06728 -0.26695
-0.11231 -0.49626 -1.10584 -0.06709 -0.26691

3 -0.00797 -0.21378 —0.49958 -0.06647 -0.26658
-0.00730 -0.21362 —-0.49957 -0.06599 -0.26614
-0.00708 -0.21326 -0.49950 -0.00243 -0.24662
-0.00528 -0.21273 —0.49945 -0.00074 -0.24622
-0.00480 -0.21266 -0.49929 0.00224 -0.24462
0.04887 -0.20088 —-0.49817 0.00666 —0.24262
0.05112 -0.20057 —-0.49736 0.00726 -0.24179
0.05189 -0.19879 —-0.49658 0.05663 -0.22306
0.08762 -0.18937 —-0.49245 0.05732 -0.22090

0.05914 -0.21858
0.06116 —0.20292

C(H) 39117E+10 6.9902E+10 6.2995E+09
C(S) 3.1434E+11 2.5033E+11 1.3117E+10

Es zeigt sich an diesen Ergebnissen, daB fiir n = 3
d-Zustinde des He* bzw. Li** und fiir n = 4 so-
gar f-Zustinde des Li** gut erfaBt werden konnen.
Ein einfach gebauter Integralkern ermoglicht somit
im Prinzip unter Anwendung der Transformation (3)
die Darstellung des gesamten Spektrums mittels ei-
ner eindimensionalen Erzeugenden. Obwohl im An-
satz fiir den Integralkern keinerlei Symmetrieelemen-
te enthalten sind, werden doch auch Zustinde hoher
Symmetrie erfaf3t.

Das Wasserstoffmolekiilion

Ein wichtiges molekulares Einelektronsystem ist
das Wasserstoffmolekiilion H, dessen geometrische
Parameter in Abb. | gezeigt sind. Hier kommt als
weiterer Freiheitsgrad der Kernabstand Rap hinzu,
fir den gilt: Rap = |Ra — Rg|. Es ist also auch
die Frage zu untersuchen, ob im Rahmen der eindi-
mensionalen Darstellung eine Geometrieoptimierung
beziiglich des Kernabstandes moglich ist. Es wird sich
zeigen, daB sich unter Anwendung von (1) fiir ver-
schiedene Kernabstinde ein Minimum ergibt, wel-
ches dem in der Literatur angegebenen entspricht.

€
r
Rs Rj
Abb. 1. Geometrie des Wasser-
— 20— stoffmolekiilions.
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Um sich a priori nicht einschrdnken zu miissen,
wurde zur Berechnung der Matrixelemente fiir die-
ses System wiederum der erweiterte Integralkern
(26) verwendet. Die Terme der Uberlappungsmatrix
S(t', t) sind dann denen der Einelektronatome dqui-
valent. Fiir H(t'.t) ergibt sich

ata(t)
a(t')+ a(t)

2a(ta(t) ; 5
8 { - n(f’)+(\(t)\u(”_u(i)i}

Ero)
X e et
a(t") + a(t)

‘e 3 a(ta(t)

AT A+ alh)

2 { a(tHa(t)
a(t') + alt) a(t')+ a(t)

H{'.t) =

[EST%]

(32)
lu(t') — u(t)!z}
lu(t') — u(t)!z}

)

lu(t') — u(t)\z}

atHut’) + a(t)u(t) B
a(t) + a(t)
27 { a(ta(t)
a(t’) + alt) a(t’) + a(t)

a(tu(t') + atyu(t) _&, A }

A

x Fo {(O(t')+0(f))

xE){((\(f )+ a() at’) + a(t)

Die Kurvenparametrisierung fiir den vierdimensio-
nalen Raum wurde nun nicht mit Sinus- sondern mit
Kosinusfunktionen angesetzt. Der Punkt ¢ = 0 ent-
spricht somit nicht mehr einer Kernposition, wodurch
keinerlei Einschriankung der Allgemeinheit beziiglich
der Kurvenkonstruktion vorliegt:

u;(t)y = Qcos(Prt), t=1..... 3
~ (33)
a(t) = Qleos(Pymt) + 1]+ 0

Die in [9] angegebenen Referenzwerte fiir das Was-
serstoffmolekiilion sind in Tab. 9 aufgefiihrt.

Tab. 9. Referenzwerte fiir das Wasserstoftmolekiilion nach
[9].

1.9972 a.u. = 1.06 A
—1.1033 Hartree
—0.6026 Hartree

Gleichgewichtsabstand R.
Elektronische Energie Fy fiir R.
Gesamtenergie Ey = Eo + 1/R.
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Tab. 10. Energieeigenwerte von H3 (in Hartree) bei Anwen-

dung der Energieprofilmethode mit a(t) = 1. Rap = Re.
N Ee Eio cond(H) cond(S)
100 -1.0626 -0.5619 0.83744E+10 0.42286E+11
200 -1.0787 -0.5780 0.23654E+12 0.19505E+13
300 -1.0866 —0.5859 0.12851E+13 0.13019E+14
400 -1.0898 -0.5891 0.46114E+13 0.48130E+14
500 -1.0912 -0.5905 0.90164E+13 0.10252E+15
600 -1.0923 -0.5916 0.13377E+14 0.17657E+15
700 -1.0931 -0.5924 0.25541E+14 0.32194E+15
800 -1.0939 -0.5932 0.33752E+14 0.44144E+15
900 -1.0945 -0.5938 0.43476E+14 0.63672E+15
1000 -1.0949 -0.5942 0.61209E+14 0.96127E+15
1100 -1.0952 -0.5946 0.74122E+14 0.12619E+16
1200 -1.0955 -0.5948 0.96794E+14 0.17919E+16
1300 -1.0957 -0.5950 0.11206E+15 0.15220E+16
1400 -1.0959 -0.5952 0.13074E+15 0.16943E+16
1500 -1.0960 -0.5953 0.14980E+15 0.32198E+17

Tab. 11. Energieeigenwerte von H3 (in Hartree) mit opti-
miertem a = 0.8 und Rag = Re..

N Ee Eiot cond(H) cond(S)
100 -1.0764 -0.5757 0.42162E+11 0.20835E+12
200 -1.0853 -0.5846 0.45378E+13 0.29722E+14
300 -1.0904 -0.5897 0.33290E+14 0.25519E+15
400 -1.0921 -0.5914 0.11757E+15 0.10934E+16
500 -1.0930 -0.5923 0.34215E+15 0.28362E+16
600 -1.0938 -0.5931 0.93500E+15 0.11044E+17
700 -1.0945 -0.5938 0.10456E+16 0.66340E+17
800 -1.0951 -0.5944 0.36744E+16 0.14946E+17
900 -1.0955 -0.5948 0.51291E+16 0.86570E+17

Zunichst wurde dieses System mit der Vereinfa-
chung a(t) = 1 berechnet. Damit werden die Para-
meter Q und P, zunichst nicht benotigt. Die Kurven-
parametrisierung erfolgt mit P, = 1.052, P, = 1.876,
P; =2.371, Q = 4, wobei wegen (33) nur eine In-
tegrationsgrenze von 7" = 1000 erforderlich ist. Die
Ergebnisse finden sich in Tabelle 10.

Schon mit dem einfachen Ansatz a(f) = 1 kdnnen
bei N = 100 Punkten 93.2% der Gesamtenergie
E\ erhalten werden und bei 1000 Punkten sind
dies 98.6%. Trotz starker Steigerung der Punktzahlen
ndhert man sich nur langsam dem exakten Wert von
—-0.6026 Hartree und man sto3t dann an die Grenzen
der numerischen Berechenbarkeit, wie an den hohen
Konditionszahlen der beteiligten Matrizen zu sehen
ist. Eine schnellere Konvergenz beziiglich der Punkt-
zahl wird durch Optimierung von a(f) = a mita # 1
erreicht. Die Werte fiir a(f) = a = 0.8 finden sich in
Tabelle 11.
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Tab. 12. Energieeigenwerte von H3 (in Hartree) mit vollem
Integralkern (26) und Rag = R..

P, Eq Eio cond(H) cond(S)
2.781 -1.0728 -0.5721 0.83399E+13 0.95367E+13
2.782 —-1.0793 -0.5786 0.27504E+14 0.94082E+12
2.783 -1.0346 -0.5339 0.79861E+13 0.67433E+13
2.784 —1.0705 -0.5698 0.21455E+13 0.22180E+13
2785 -1.0732 -0.5725 0.23914E+13 0.35716E+12
2.786 —1.0837 -0.5830 0.52405E+13 0.18465E+13
2.787 -1.0742 -0.5735 0.38255E+12 0.30564E+12
2.788 —-1.0771 -0.5765 0.16710E+14 0.10760E+13
2.789 -1.0711 -0.5704 0.63707E+12 0.11308E+13
2790 -1.0467 -0.5460 0.31893E+12 0.36877E+12

Aufgrund der Optimierung sind nun weniger Punk-
te bei gleicher Qualitdt erforderlich, eine Steige-
rung der Punktzahl tiber N = 900 war jedoch nicht
moglich. Interessanterweise konnte im Gegensatz zu
den Einelektronatomen unter Verwendung des vol-
len Integralkernes (26) mit dem parameterabhédngigen
Exponenten «(t) und der zugehodrigen Kurvenpara-
metrisierung (33) keine Verbesserung erzielt werden.
Die Abhingigkeit des tiefsten Energieeigenwertes
vom Parameter Py ist unsystematisch und erschwert
die Suche nach einem optimalen P, wie Tab. 12 fiir
Q = 2und N = 300 zeigt (die anderen Parameter
wurden unverdndert gelassen).

Bei Variation von P; iiber einen groB3eren Bereich
konnte nie ein Energiewert E, < —1.0900 Hartree
erhalten werden. Es darf angenommen werden, daf3
im Prinzip eine Flexibilisierung des Integralkernes
mittels a(t) eine Verbesserung erbringen sollte. Da
nun aber die Kurve u(t) Element des R* ist, wird
die Raumfiillung und damit die Abtastung der rele-
vantesten Punkte nicht mehr so gut sein, wie im Fall
u(t) € R’

Zur Geometrieoptimierung des Molekiils wurden
die Parameter P, — P; und @ unverindert iibernom-
men, wobei a(t) = 0.8 gesetzt wurde. Die Kurve u(t)
ist somit Element des R”. Die jeweiligen Energien fiir
verschiedene Kernabstinde wurden mit einer Punkt-
zahl von V = 500 ermittelt, wobei fiir jeden Kernab-
stand das Energieprofil neu zu erzeugen ist, da sich
die Lage der Kerne relativ zur Kurve dndert. Obwohl
die Kurvenparametrisierung bei den einzelnen Kern-
abstidnden unverdndert bleibt, verschieben sich doch
die lokalen Minima. In Abb. 2 sind graphisch fiir ver-
schiedene Kernabstinde in Schritten von 0.01 a.u. die
sich ergebenden Gesamtenergien aufgetragen. Dabei
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Abb. 2. Gesamtenergie des H3 Molekiilions in Abhidngigkeit
vom Kernabstand R g mit einem Minimum bei R. nach [9].

wird deutlich, dal im Rahmen der eindimensionalen
Formulierung auch eine gute Geometrieoptimierung
erfolgen kann.

Wellenfunktionsapproximationen

Nachdem mittels (8) zum Eigenwert ¢, die Ko-
effizienten ¢, bestimmt wurden, kann die nach (9)
bestimmte Wellenfunktionsapproximation mit der be-
kannten analytischen Losung verglichen werden. Fiir
das He*-Ion und die zugehorigen optimierten Parame-
ter aus Tab. 2 wurde die 1s- und 2s-Wellenfunktion
nach (9) bestimmt. In Abb. 3 sind fiir diese beiden
Fille die Wellenfunktionen graphisch wiedergegeben.

Die Energiedifferenz zur exakten Grundzustand-
senergie des He* betrdgt nach Tab. 8 29 mHartree.
Diese Differenz ist im Vergleich zur Qualitdt der
angeregten Zustidnde doch noch betridchtlich. Daher
ist es auch verstidndlich, dal im kernnahen Bereich
die Abweichungen der berechneten Wellenfunktio-
nen am grofiten sind. Wihrend die exakte Wellen-
funktion den Cusp aufweist, verhilt sich die eindi-
mensional erzeugte Funktion gauBartig. Bei grofe-
ren Werten fiir R wird dann die Ubereinstimmung
besser. Man kann dieses Problem verringern, wenn
man die Kurvenparametrisierung derart anlegt, da3
bei ganzzahligen Vielfachen von T jeweils verschie-
den gewichtete Integralkerne am Kernort zu liegen
kommen, wihrend innerhalb des Integrationsberei-
ches [0...T] die schon bekannte Parametrisierung
einsetzt. Dies ist jedoch nur eine programmtechnische
Frage und beriihrt nicht das Prinzip der eindimensio-
nalen Darstellung.
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Abb. 3. Vergleich zwischen exakter und eindimensional generierter 1s bzw. 2s Wellenfunktion fiir He* in atomaren
Einheiten. Die exakten Wellenfunktionen weisen den Cusp am Kernort auf.
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